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Workspace Analysis of a Six-Degrees of Freedom, Three-
Prismatic-Prismatic-Spheric-Revolute Parallel Manipulator
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This paper studies the workspace of a six-degrees-of-freedom
parallel manipulator of the general three-PPSR (prismatic-
prismatic-spheric-revolute) type. It is known that a drawback
of parallel manipulators is their limited workspace. To develop
parallel mechanisms with a larger workspace is of use to
potential applications. The mechanism of a three-PPSR manipu-
lator and its variations are briefly analysed. The workspace is
then investigated and the effects of joint limit and limb inter-
ference on the workspace shape and size are numerically
studied. The constituent regions of the workspace correspond-
ing to different classes of manipulator poses are discussed. It
is shown that the workspace of this parallel manipulator is
larger than that of a comparable Stewart platform, especially
in the vertical direction.
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1. Introduction

In the past decade, many researchers have shown an interest
in parallel manipulators. Compared with the more commonly
used serial manipulators, the parallel ones have advantages in
accuracy, rigidity, capacity, and load-to-weight ratio. A parallel
manipulator consists of a moving platform, a base platform and
several branches connecting both platforms through appropriate
kinematic joints with appropriate actuators. The best known
parallel manipulator is the Stewart platform [1], which has
been widely studied. In a Stewart platform, six bars connecting
moving and base platforms are extensible to control the position
and orientation of the moving platform.

Many different 6-degrees-of-freedom (DOF) parallel manipu-
lators have been proposed. Recently, Tahmasebi and Tsai [2–
5] introduced and studied a novel parallel manipulator (Fig. 1).
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This mechanism consists of an upper and a lower platform
and three inextensible limbs. The lower end of each limb
connects through a ball-and-socket joint to an actuator. The
actuator is of a linear stepper type but is capable of moving
in both x- andy-directions simultaneously on the base platform.
The upper end of each limb is connected to the moving
platform by a revolute joint. The manipulator is therefore a
3PPSR mechanism, where P denotes the prismatic pair, S the
spherical pair, and R the revolute pair. The output motion of
the 2D linear stepper motors is similar to that of two cross-
prismatic pairs on the base platform. The desired motion of
the upper platform is obtained by moving the actuators on the
base platform, to which the lower ends of the three limbs are
attached. Besides the merits of general parallel mechanisms
over their serial counterparts mentioned before, this 3PPSR
mechanism has added advantages, including simpler structure
and higher stiffness. It is also less likely that its limbs will

Fig. 1. A 3-PPSR parallel manipulator.
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Fig. 2. Variations in pair sequence and type. (a), (b), and (c) form a
kinematically equivalent set, whereas (d), (e), and (f) form another.

interfere with each other, since it has only three inextensible
limbs instead of six extensible limbs as in a Stewart platform.

Tahmasebi and Tsai perceived this mechanism as being used
as a minimanipulator, which can be mounted between the
wrist and the end-effector of a serial manipulator for error
compensation as well as for delicate position and force control.
Therefore, the required workspace is rather small so that the
motion of each actuator is limited to within a small circular
area on the base platform when its workspace is considered
[6]. The actuators carrying the limbs, however, do not have to
be so restricted, they can move over the entire base platform,
resulting in a much larger workspace. As a result, this 3PPSR
mechanism can be used as a stand-alone manipulator. In
addition, its special assembly of kinematic pairs makes it
possible to have a workspace that is very different from and
larger than that of a comparable Stewart platform. The study
of workspace of a manipulator is one of the fundamental
problems in the design of robot arms. As many researchers
have pointed out, the major drawback of parallel mechanisms
is their limited workspace. This 3PPSR parallel mechanism
can help overcome the limitations of traditional parallel
manipulators and extend the applications of parallel mech-
anisms. This paper analyses the size, shape, composition, and
constraints of the workspace of the 3PPSR parallel manipulator.

The workspace of parallel manipulators has attracted the
attention of many researchers over the past decade. Much
reported work on parallel mechanism workspace dealt with
2DOF or 3DOF planar and spherical manipulators. Asada and
Ro [7] and Bajpai and Roth [8] analysed the workspace of a
closed-loop planar 2DOF 5-bar parallel mechanism. Gosselin
and Angeles [9,10] studied the workspace of planar and spheri-

cal 3DOF mechanisms. Lee and Shah [11] and Waldron et al.
[12] demonstrated the workspace of a spatial 3DOF in-paral-
lel manipulator.

Much less work has been reported for the workspace of
6DOF parallel manipulators. Yang and Lee [13], Fichter [14],
and Merlet [15] described the workspace of 6DOF parallel
manipulators, using a method based on discretisation of the
Cartesian space. Gosselin [16] used geometric properties to
introduce an algorithm for determining the workspace of a
6DOF Stewart platform. His results showed that the workspace
was the intersection of six annular regions. Masory and Wang
[17] more systematically studied the workspace of a 6DOF
Stewart platform. Their report discussed several constraint con-
ditions for calculating its workspace, including the region of
the angle of rotation of kinematic pairs and the interference
between any two limbs of the mechanism. In addition, they
analysed the shape of the workspace and the relationship
between the workspace and the geometric parameters of the
mechanism. Tahmasebi and Tsai [6] studied the workspace of
this new 3PPSR parallel manipulator, where the motion of
each of the three actuators attached to the lower end of each
limb is limited to a small circular area. In the workspace
analysis presented in this paper, limb interference and joint
limitations are considered, and the actuators are allowed to
move within a larger circle of diameterd (Fig. 1). The compo-
sition of the workspace is also studied by identifying the
constituent regions according to different classes of manipu-
lator poses.

2. Mechanism Analysis

As mentioned before, the upper and lower platforms of a
3PPSR mechanism are connected by three identical limbs each
with the following kinematic pairs: double prismatic pairs, one
spherical pair and one revolute pair (Fig. 2(a)). A spherical
joint is kinematically equivalent to three non-coplanar revolute
joints with a common point denoted asRRR. Thus the PPRRRR
system shown in Fig. 2(b) is kinematically equivalent to the
PPSR system. The PPSR arrangement is also kinematically
equivalent to the limb shown in Fig. 2(c). This limb has a
2DOF universal joint at each of its lower and upper ends,
where one of the axes of the upper universal joint is collinear
with the limb, whereas another axis of the upper universal
joint as well as one of the axes of the lower universal joint
are always perpendicular to the limb [6]. In summary, the
three structures: PPSR, PPRRRR, and PPUU, as shown in
Figs 2(a), 2(b) and 2(c), are kinematically equivalent, whereU
denotes the universal joint. A similar structure, PPRS
(Fig. 2(d)), can be obtained by exchanging the spherical pair
and the revolute pair of the PPSR system. It is, however,
kinematically different from the PPSR system, as shown below;
but the PPRS system is kinematically equivalent to the two
systems shown in Figs 2(e) and 2(f). Therefore, the set shown
in Figs 2(a), 2(b), and 2(c) look similar but different from the
set shown in Figs 2(d), 2(e) and 2(f).

Screw theory [18,19] is used in determining the difference
between the two sets of structures. Every axis of the revolute
joints can be expressed as a screw with zero pitch. The
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PPRRRR system (Fig. 2(b)), which belongs to the first set, and
PPRRRR(Fig. 2(e)), which belongs to the second set are taken
as an example. A reference frameoxyz is defined for both
PPRRRR and PPRRRR. The origin o is located at the inter-
secting point of two lines corresponding to the two directions
of the 2D actuators. Thex and y-axes lie collinear with the
moving directions of the two prismatic pairs. Thez-axis is
defined by the right-hand-rule perpendicular to the base plat-
form. Assuming that the limb is not collinear with thez-axis,
two sets of screw systems may be given as follows:

Screw system 1 (for PPRRRR) Screw system 2 (for PPRRRR)
$P11: (0 0 0; 1 0 0) $P21: (0 0 0; 1 0 0)
$P12: (0 0 0; 0 1 0) $P22: (0 0 0; 0 1 0)
$R13: (1 0 0; 0 0 0) $R23: (1 0 0; 0 0 0)
$R14: (0 1 0; 0 0 0) $R24: (0 1 1; 0 0 0)
$R15: (0 0 1; 0 0 0) $R25: (0 1 0; 21 0 0)
$R16: (1 0 0; 0 1 1) $R26: (1 0 0; 0 1 1)

From these two screw systems one can see that the six screws
of each screw system are linearly independent, since their
Jacobian matrices do not vanish

detJi = det[$Pi1 $Pi2 $Ri3 % $Ri6] ± 0 (i = 1, 2) (2)

Here, one can see why one of the axes of the upper (lower)
universal joint must be collinear with the limb, as shown in
Figs 2(c) (2(f)). If this condition is not satisfied, the Jacobian
matrix will become singular. For instance, if$R15 is not collin-
ear with the limb (Fig. 2(c)) but is parallel with they-axis, its
screw becomes$R15 = (0 1 0; 21 0 0). The new Jacobian
matrix involving $9R15 instead of$R15 in the screw system 1
will be singular owing to linear dependence. It is easy to see
that $9R15 is a linear combination of$P11 and $R14. If all three
legs of the parallel mechanism do not satisfy this condition, it
will lose at least two degrees of freedom.

Note that, if the axis of the last revolute pair,$R16, of
system PPRRRR (or PPSR) intersects theZ-axis, the last
component of$R16 will be zero. That is,$R16: (a b c; d e 0),
where a, b, c, d, and e are any real numbers, and the first
three components (a, b, and c) and/or the last two (d and e)
cannot all be zero. There exists a screw$r: (0 0 1; 0 0 0)
which is reciprocal to all the six screws in screw system 1.
This means that screw system 1 is linearly dependent, and
only equivalent to a five-system screw [19]. The system loses
one degree of freedom, that is, the translation along thez-axis.
The entire 3PPSR mechanism will be singular, even if only
one of its three limbs is in this condition. On the other hand,
this type of singularity cannot exist for the screw system 2
(PPRRRRor PPRS), since the last three non-coplanar revolute
pairs are equivalent to a spherical pair. Only two of the three
axes can intersect theZ-axis simultaneously, and the third axis
of the spherical pair cannot intersect theZ-axis at all.

Although they are linearly independent and both have six
degrees of freedom, these two screw systems are different
from each other. As a result, parallel mechanisms consisting
of those different screw systems are also different, as illustrated
in Fig. 3. The two mechanisms have the same geometrical
parameters including leg lengths and moving triangles, the only
difference being that one uses branches PPSR, and the other
PPRS. Assuming that the upper and lower platforms are parallel

Fig. 3.Difference resultant displacements due to different structures.
(a) A 3-PPRS mechanism. (b) A 3-PPSR mechanism.

initially, let the two upper platforms rotate from their initial
positions for the same amount aboutB2, B4 andb2, b4, respect-
ively. It is easy to see that the resultant positions of the two
mechanisms are different.

3. Workspace Analysis

A fixed reference frameOXYZ is attached to the base platform,
as shown in Fig. 1. The originO is located at the centroid of
the large circle with diameterd. The X- and Y-axes lie on the
same base platform and theZ-axis is upward perpendicular to
the base. The moving reference frameGuvw is attached to the
moving platform. The pointG is located at the centroid of the
equilateral triangle. Theu-axis is parallel withP2P3, and the
v-axis passes through pointP1. The w-axis is perpendicular to
the moving plane.

To determine the workspace of a mechanism, its direct
kinematics is normally needed. Inverse kinematics, however,
has always been applied for this purpose when parallel mech-
anisms are concerned, although inverse kinematics requires the
use of a numerical solution. Given a pose (position and
orientation) of the manipulator, the reference point of the upper
platform determines an allowable point within the workspace,
if the inverse kinematics of the given pose exists under all the
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Fig. 4. Top view of workspace (case 1 : {uu, uv, uw} = {0°, 0°, 0°}).

kinematic constraints. By giving a series of poses and obtaining
a series of allowable points of the upper platform, the work-
space becomes as an assembly of all the allowable points.

3.1 Inverse Kinematics

The coordinates of pointPi in the moving platform can be
calculated via coordinate transformation when the pose of the
upper platform is known. The orientation of the moving plat-
form is given by Euler’s angles yaw (uu), pitch (uv), and roll
(uw). The coordinates of the centre pointG with respect to the
fixed frame areXg, Yg, and Zg. The coordinate transformation
matrix is

YPR(uu, uv, uw) =

3
cosuv cosuw sinuusinuvcosuw2 cosuusinuw cosuu sinuvcosuw1 sinuusinuw xg

cosuvsinuw sin uusinuvsinuw1 cosuucosuw cosuusinuvsinuw 2 sinuu cosuw yg

2sinuw sinuvsinuw cosuucosuv zg

0 0 0 1
4

(3)

The coordinates of pointsP1, P2, andP3 with respect to frame
Guvw are

P91 = (0, m, 0)T

P92 = (21
2, 21

2 tan 30°, 0)T

P93 = (1
2, 21

2 tan 30°, 0)T (4)

wherem = 1
2 cos 30°. The coordinates of pointPi with respect

to the fixed frame are

Pi = YPR(uu, uv, uw) SP9i

1 D (i = 1, 2, 3) (5)

From the geometry of the manipulator shown in Fig. 1, two
simultaneous equations can be obtained. The first equation is:

(xp,i 2 xr,i)2 1 (yp,i 2 yr,i)2 1 (zp,i 2 k)2 = r2 (6)

where constantk is theZ-coordinate of pointRi. The subscripts
p, i and r, i denote pointsPi and Ri, respectively. This is the
equation for a circle on the base. The second equation follows
from the perpendicularity of vectorRiPi and vectorPi11Pi12.
Since the joint at pointPi is revolute, pointRi is the intersection
of the circle of Eq. (6) with the plane that contains vector
RiPi and is normal to vectorPi11Pi12. That is,

Pi11Pi12 = knx, ny, nzl

= kxp,i12 2 xp,i11, yp,i12 2 yp,i11, zp,i12 2 zp,i11l (7)

The equation of the plane is given as

nx(xp,i 2 xr,i) 1 ny(yp,i 2 yr,i) 1 nz(zp,i 2 k) = 0 (8)

Equations (6) and (8) are solved forxr,i and yr,i,

xr,i = [2kn2
xnz 1 n3

xxp,i 1 nxn2
yxp,i 1 n2

xnzzp,i 7 nxny(2k2n2
x

2 k2n2
y 2 k2n2

z 1 n2
xr2 1 n2

yr2 1 2kn2
xzp,i

1 2kn2yzp,i 1 2kn2
zzp,i 2 n2

xz2
p,i 2 n2

yz2
p,i 2 n2

zz2
p,i)0.5]/[n3

x 1 nxn2
y]

yr,i = [2kn2
ynz 1 n2

xyp,i 1 n2
yyp,i 1 nynzzp,i 6 nx(2k2n2

x 2 k2n2
y

2 k2n2
z 1 n2

xr2 1 n2
yr2 1 2kn2

xzp,i 1 2kn2
yzp,i

1 2kn2
zzp,i 2 n2

xz2
p,i 2 n2

yz2
p,i

2 n2
zz2

p,i)0.5]/[n3
x 1 nxn2

y] (9)

Because Eq. (6) is a second-order polynomial,xr,i and yr,i can
have two values. These two values are valid as long as they
satisfy the joint limit and interference conditions, and are
within the allowable footprint space.

3.2 Kinematic Constraints

In determining the workspace of a 3PPSR manipulator, three
types of kinematic constraints are considered. They are the
diameter of the footprint circle, joint angle limits, and link
interference.

Footprint Circle. The positions of the lower ends of all three
limbs must be inside the footprint circle (Fig. 1), that is

uRiu # d/2 (10)

where d is the diameter of the footprint circle andRi denotes
the radius vector of pointRi with respect to the originO.

Joint Angle Constraints. The links are attached to the upper
and lower plates by kinematic pairs which have physical limits.
For instance, a ball joint is theoretically free to rotate 360°
about each of the three orthogonal axes. In practice, however,
its motion is restricted by the physical construction of the joint
within a relatively small range. Thus, there is a need to impose
a maximum rotational angleumax for each joint. The rotational
angle and its limitation can be expressed as

ui = cos21 ((vi·ui)/uviu) # ui,max (11)
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Fig. 5. Theoretical workspace boundary (without joint limit and interference constraints) (without showing the top and bottom plates of the
boundary for viewing convenience).

wherevi is the vector of linkl i, andui is a vector representing
the line which bisects the rotational range of each kinematic
pair with respect to the fixed frame.

Link Interference. Since links have physical dimensions,
interference might occur. Assume that each link is cylindrical
with a diameterd1, and D is the shortest distance between
two adjacent linksl i and li11, the interference limitation can
be expressed by

d1 # D (12)

The shortest distance between the centre-lines of two links is
the lengthDn of their common normalni. That is

Dn = uni·PiPi11u (13)

where the unit vectorni of the common normal direction
between two adjacent linksli and li11 can be obtained as

ni = (vi 3 vi11)/uvi 3 yi11u (14)

Note that, the shortest distance between links is not always
equal to the lengthDn of the common normal. It could be
larger thanDn. The shortest distance from pointPi to the link
l i11, if the intersection pointCi of the link l i and the common
normal of the two links is situated beyond the linkli itself, or
the intersection pointMi of the link l i and the perpendicular
line from point Pi11 to link li is situated beyond linkl i itself.
The shortest distance is the distance between the two endpoints
Pi and Pi11, if the two intersection points,Mi and Mi11, are
both beyond linksl i and l i11 [17].
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Fig. 6. Practical workspace boundary (with joint limit and interference constraints) (without showing the top and bottom plates of the boundary
for viewing convenience).

Three lines, including two adjacent links and their common
normal, define two planes. The normals of these two planes are

ni 3 vi

uni 3 viu
= kai, bi, cil

ni 3 vi11

uni 3 vi11u
= kai11, bi11, ci11l (15)

The equations of the two planes are

ai(x 2 xp,i) 1 bi(y 2 yp,i) 1 ci(z 2 zp,i) = 0 (16)

ai11(x 2 xp,i11) 1 bi11(y 2 yp,i11) (17)
+ ci11(z 2 zp,i11) = 0

A line in 3D space can be represented as

x 2 xp,i

vx,i

=
y 2 yp,i

vy,i

=
z 2 zp,i

vz,i

(18)

The equations of two centre-lines of two adjacent legs can be
resolved from

vy,i(x 2 xp,i) 2 vx,i(y 2 yp,i) = 0 (19)
vz,i(y 2 yp,i) 2 vy,i(z 2 zp,i) = 0 (20)
vy,i11(x 2 xp,i11) 2 vx,i11(y 2 yp,i11) = 0 (21)
vz,i11(y 2 yp,i11) 2 vy,i11 (z 2 zp,i11) = 0 (22)

where Eqs (19) and (20) represent the centre-line of link,l i,
and Eqs (21) and (22) the centre-line of linkl i11.

The intersection pointCi between linel i and the common
normal is obtained by solving Eqs (17), (19) and (20), simul-
taneously.
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Fig. 7. Actual workspace obtained by revolving the boundaries shown
in Figs. 5 and 6 about theZ-axis for 360°. (a) Theoretical (case 5,
Fig. 5(e)). (b) Practical (case 5, Fig. 6(e)).

xintercept,i = [aivx,i11xp,i 1 bi(vy,i11xp,i11 1 vx,i11yp,i 2 vx,i11yp,i11)

1 ci(vz,ixp,i11 1 vx,i1zp,i 2 vx,i11zp,i11)]/[aivx,i11 1 bivy,i11 1 civz,i]

yintercept,i = [ai(vy,i11xp,i 2 vy,i11xp,i11 1 vx,i11yp,i11) 1 bivy,i11yp,i 1 ci(vz,iyp,i11

1 vy,i11zp,i 2 vy,i11zp,i)]/[aivx,i11 1 bivy,i11 1 civz,i]

zintercept,i = [ai(vz,ixp,i 2 vz,ixp,i11 1 vx,i11zp,i11) 1 bi(vz,iyp,i 2 vz,iyp,i11

1 vy,i11zp,i11) 1 civz,izp,i]/[aivx,i11 1 bivy,i11 1 civz,i]

(23)

Equations (16), (21), and (22) are solved simultaneously to
obtain the intersection pointCi11 on line i11.

xintercept,i11 = [ai11vx,ixp,i11 1 bi11(vy,ixp,i11 1 vx,iyp,i11 2 vx,iyp,i)

1 ci11(vz,i11xp,i 1 vx,izp,i11 2 vx,izp,i)]/[ai11vx,i 1 bi11vy,i 1 ci11vz,i11]

yintercept,i11 = [ai11(vy,ixp,i11 2 vy,ixp,i 1 vx,iyp,i)

1 bi11vy,iyp,i11 1 ci11(vz,i11yp,i 1 vy,izp,i11 2 vy,izp,i11)]/[ai11vx,i

1 bi11vy,i 1 ci11vz,i11]

zintercept,i11 = [ai11(vz,i11xp,i11 2 vz,i11xp,i 1 vx,izp,i)

1 bi11(vz,i11yp,i11 2 vz,i11yp,i 1 vy,izp,i)

1 ci11vz,i11zp,i11]/[ai11vx,i 1 bi11vy,i 1 ci11vz,i11] (24)

For the 3-PPSR mechanism considered in this paper, all six
links are located between two plates. Interference is therefore
impossible if ZCi

$ ZPi
and ZCi11

$ ZPi11
.

4. Numerical Examples and Discussion

The workspace subject to the above-mentioned constraints is
numerically studied. Each link is assumed to be cylindrical,
and the geometric parameters are given asr = 2.5 units, l =
1.0 units, d = 6 units, d1 = 0.15 units,ur,max = 75°, us,max =
60°, and k = 0, wherer denotes the leg length ofPiRi, l the
length of each side of the moving triangle,d the diameter of
the footprint circle on the base platform,d1 the diameter of
the links. ur,max and us,max are the allowable maximum angles
of rotation for the revolute joint and the spherical joint, respect-
ively, and constantk denotes theZ coordinate of pointRi.

The 3D workspace is presented in two graphical forms, i.e.
a 2D top view, and a 3D isometric view of the workspace
boundary, without showing the upper and lower portions of
the boundary for viewing convenience. Since the workspace
involves both position and orientation, it is 6D and therefore
three invariable Euler angles are specified for each case below.
In order to demonstrate the different situations and the effects
of constraints on workspace size and shape, five typical cases
are studied.

Case 1 : {uu, uv, uw} = {0, 0, 0}
Case 2 : {uu, uv, uw} = {20, 0, 0}
Case 3 : {uu, uv, uw} = { 220, 0, 0}
Case 4 : {uu, uv, uw} = {0, 20, 0}
Case 5 : {uu, uv, uw} = {20, 20, 0}

Note that, since the platform is symmetric about thev-axis of
the moving platform, the case of {uu, uv, uw} = {0°, 220°,
0°} will be the same as {uu, uv, uw} = {0°, 20°, 0°}. In
addition, uw remains zero in all five cases because the shape
of the workspace will remain the same for anyuw value. This
is in turn because the workspace will simply rotate byuw for
any non-zerouw value without shape change.

Figure 4 shows shows the top view of the workspace for
case 1 where {uu, uv, uw} = {0°, 0°, 0°}. Figure 5 includes
isometric views of the theoretical workspace for all five cases
where the effects of joint angle constraints and interference
are not considered, while Fig. 6 shows isometric views of the
practical workspace for the same five cases where all the
kinematic constraints are considered. It is seen that the shapes
and the structures of the workspaces of this 3-PPSR parallel
mechanism are completely different from that of traditional
parallel mechanisms. It allows a larger range of motion in the
Z-direction especially.

It should be pointed out that the workspaces shown in Figs 5
and 6 are obtained whenuw is kept at zero. Sinceuw can
rotate by 360°, the actual shape of the workspace is obtained
by rotating the shapes shown in Figs 5 and 6 about theZ-axis
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Fig. 8. Constituent regions and corresponding classes of poses case 1: {uu, uv, uw} = {0°, 0°, 0°} (the footprint circle of diameter 6 units is
also shown in (a), (c), and (e)).

by 360° (Fig. 7). Compared with a comparable Stewart plat-
form, which usually has a workspace in the shape of a mush-
room cap, this workspace has a cylindrical shape and therefore
a largerZ range.

The workspace is examined in detail to understand its com-
position. The examination is achieved through decomposing
the workspace into its constituent regions according to different
classes of manipulator poses. The workspace shown in Fig. 4
(case 1) is used as an example. Four types of constituent
regions can be identified for, say,Z = 1.0.

Type 1 region: the shape (superposed on the footprint circle)
in Fig. 8(a), which corresponds to the pose in which leg 1
points toward the platform and other two legs point outward
from the platform (Fig. 8(b)). Alternatively, legs 2 or 3 may
point toward the platform while leg 1 points outward, giving
a region similar to, but 120° apart from, the region shown
in Fig. 8(a).

Type 2 region: the shape (superposed on the footprint circle)
in Fig. 8(c), which corresponds to the pose in which both legs
1 and 2 point toward the platform while the third points
outward from the platform (Fig. 8(d)). Alternatively, legs 2 and
3 and 1 may point toward the platform while the third points
outward, giving regions similar to, but again 120° apart from,
the region shown in Fig. 8(c).
Type 3 region: the shape (superposed on the footprint circle)
in Fig. 8(e), which corresponds to the pose in which all three
legs point toward the platform (Fig. 8(f)).
Type 4 region: the shape similar to the one shown in Fig. 8(e),
which corresponds to the pose in which all three legs point
outward from the platform. This type of region has no practical
effect on workspace determination since it is always a subset
of the type 3 region.

All these regions are plotted in Fig. 9, where a footprint
circle of diameter 6 units is also plotted. It is clear that the
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intersection of these regions forms an area which is identical
to that shown in Fig. 4. It is, therefore, clear that they are the
constituent regions of the workspace.

Fig. 9. Intersection of the constituent regions forms the workspace
(case 1: {uu, uv, uw} = {0°, 0°, 0°}) (the footprint circle of diameter
6 units is also shown).

5. Conclusion

In this paper, the workspace of the 3-PPSR manipulator is
analysed. It is shown that the workspace consists of three
types of region, each corresponding to a class of manipulator
poses. The effects of kinematic constraints, including revolute
and spherical joint limitations and limb interference on work-
space structure are shown. The 3-PPSR manipulator has a
workspace of cylindrical shape, while a Stewart platform usu-
ally has a mushroom-cap type of workspace, which allows
limited motion in theZ-direction.
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